Complexity reduction of astrochemical networks: a topological approach

S. Bovino

Institut für Astrophysik Göttingen

October 8, 2012

What we know

- · Chemistry is one of the bottleneck of a simulation
- Solving chemistry \rightarrow set of stiff coupled ODE's
- We need reduction techniques

How to reduce the ODE's system?

- Reducing the # reactions in the RHS (most heavy part of the problem) (Dr. Grassi's talk)
- Reducing the dimensionality (remove species→# ODE's decreases) (this talk)

Methods

Reducing dimensionality: A priori methods

- Preselect important species (by physical assumptions) [e.g. Nelson+ 1999]
- Linear subset [e.g. Glover+ 2010]
- Lumping methods [e.g. Okino+ 1998]
- SVD, PCA, ...
- Topology-based methods

What does it mean topology?

Topology is a usually schematic description of the arrangement (geometrical) of a network, including its nodes and connecting lines.

Networks as directed graph /1

Directed graph network examples

WORLD-WIDE WEB

INTERNET

Networks as directed graph /2

Astrochemical networks

 $\begin{array}{l} \text{NODES} \rightarrow \text{chemical species} \\ \text{EDGES} \rightarrow \text{conversion between chemicals} \end{array}$

(R. V. Solé & A. Munteanu 2007)

Topology-based reduction /1

- a priori method
- using network topology to determine most "active" chemical species
- degree, $2^{\rm nd}$ degree, betweenness centrality, \ldots
- (see Jolley+ 2010, 2012; Barabasi+ 20**)

Topology-based reduction /2

2nd degree follows "The SOCIAL NETWORK rule"

What is it important?

To know people (nodes) who are in touch with many other people Similar to **PageRank** algorithm of Google

Our approach

- Evaluate the $2^{\rm nd}$ degree of each node
- Ranking of the species based on the $2^{\rm nd}$ degree
- Choose a threshold:
 - $\,\circ\,$ taking a fraction of the largest $2^{\rm nd}$ degree
 - $\circ\,$ taking the smallest $2^{\rm nd}$ degree of one of the most abundant species (above a given initial threshold)
- Cut the species (and then reactions involving them) below the threshold
- We reduced the dimensionality of the problem!

Application I: one-zone large network

- UMIST2008, Wakelam&Herbst 2008
- species: 454
- reactions: 4431
- one-zone
- no cooling
- *T* = 10 K
- $\zeta_{\rm CR} = 1.3 \times 10^{-17} \ {\rm s}^{-1}$
- $A_v = 10$

Application I: one-zone results ($x_{\rm C}(t)$, $x_{\rm O}(t)$)

Application I: one-zone results ($x_{CO}(t)$, $x_{OH}(t)$)

Application II: 1D Lagrangian code, VERY PRELIMINARY TEST

- Lagrangian
- Cooling, Heating, UV field
- Dust accretion
- Dust destruction (see Grassi+ 2011)
- Shocks (collapse in the near future)

- species: 455
- reactions: 4431
- no cooling, no dust physics
- we only include CHEMISTRY

•
$$T_{ej}$$
=10⁴ K, T_{amb} = 10 K

•
$$ho_{amb}=10^{-22}~{
m g/cm^3}$$

•
$$ho_{ej}=10^{-20}~{
m g/cm^3}$$

• # cells = 50, fireballs = 10

•
$$\mathsf{R} = 1$$
 pc, $\mathsf{t}_{\textit{final}} = 10^6$ ys

Application II: 1D results $(n_{\mathrm{H}^+}(t_{\mathrm{final}}, R), n_{\mathrm{CH}}(t_{\mathrm{final}}, R))$

Application II: 1D results $(n_{C^+}(t_{final}, R), n_O(t_{final}, R))$

method (# reac.)	CPUtime
full (4431)	1.00
topology (3313)	0.50
topology (2369)	0.37
topology (2014)	0.30

Additional information /1

- Error less than 10%
- We can save 70% of the CPU time (both in one-zone and in 1D)
- Most important \rightarrow we can obtain chemical information on the network, e.g. species cutted: CI/CI⁺, Mg/Mg⁺, Fe/Fe⁺, MgH, HF, C-chains, F and many reactions involving C⁺ and He⁺.

Most important HUBS (where most of the information is)

Further considerations

- more accurate tests needed: e.g. including metal cooling
- what about a hybrid method \rightarrow topology + flux-based?

- changes in species abundances not necessarily means a change in the dynamic!
- Hybrid method (very preliminary) gives additional speed-up!

Summary

- Computational chemistry needs reduction methods
- Topology-based method gives good speed-up, 2x<speed-up<3x
- On-the-fly method works well, 2x<speed-up<10x depending on network's size (Tommaso's talk)
- Coupling a priori + "on the fly" reduction methods should save a lot of CPU-time (work in progress)
- All these methods can be applied to smaller network (e.g. Low-Z network with \sim 600 reactions)
- Chemistry problem is SOLVER's dependent (DVODE, DLSODES)
- Work on a specific (special) solver for astrochemical networks! (hard but possible)

Thank you for your attention!

Also thanks to: Dr. T. Grassi (University of Rome Sapienza) Prof. Dr. D. Schleicher (IfA Göttingen)