Impact of the First Stars/Binaries

Ke-Jung (Ken) Chen

Johnston Graduate Fellow, University of Minnesota The low-metallicity ISM meeting, Göttingen, Oct. 8-12, 2012

Team Members

Volker Bromm UT-Austin

Myoungwon Jeon UT-Austin

Alexander Heger MoCA Monash

Thomas Greif ITC Harvard

History of Universe

History of Universe

History of Universe

₳

₳

Characters of the First Galaxies

Bromm, & Yoshida (2011)

- Mass scale ~ $10^8 M_{\odot}$
- Redshift ~ 10
- Self-bound system.
- Affected from the previous stellar feedback
- Hosted the Pop III and Pop II stars

Characters of the First Galaxies

Bromm, & Yoshida (2011)

- Mass scale ~ 10⁸ M_{\odot}
- Redshift ~ 10
- Self-bound system.
- Affected from the previous stellar feedback
- Hosted the Pop III and Pop II stars

The First Stars

Talks: Ferrara, Omukai, Clark, Yoshida

Abel, et al. Science (2002)

Bromm, et al. Nature (2009)

The First Stars

Talks: Ferrara, Omukai, Clark, Yoshida

Abel, et al. Science (2002)

Bromm, et al. Nature (2009)

Mass Scale ~ 50 - 100 M_{\odot}

The Death of Massive Stars

Woosley, Heger, & Weaver (2002)

MS Mass	He Core	Supernova Mechanism			
$10 \le M \le 85$	$2 \le M \le 32$	Fe core collapse to a neutron star or black hole			
$80 \leq M \leq 150$	$35 \le M \le 60$	Pulsational pair instability followed by core (PPSN)			
$150 \le M \le 250$	$60 \le M \le 133$	Pair instability supernova (PSN)			
$250 \leq M$	$133 \leq M$	Black holes			

Mass Unit: solar mass \odot

The Death of Massive Stars

Woosley, Heger, & Weaver (2002)

	MS Mass	He Core	Supernova Mechanism				
	$10 \le M \le 85$	$2 \le M \le 32$	Fe core collapse to a neutron star or black hole				
	$80 \le M \le 150$	$35 \le M \le 60$	Pulsational pair instability followed by core (PPSN)				
First Stars	$150 \le M \le 250$	$60 \le M \le 133$	Pair instability supernova (PSN)				
	$250 \leq M$	133 ≤ M	Black holes				

S

$250 \text{ M}\odot > \text{M} > 150 \text{ M}\odot$

Explosive Burning of 150 $M\odot$ Star

PSN Explosion Chen+ (2012) Using CASTRO

Explosive Burning of 150 $M\odot$ Star

Wednesday, October 10, 12

Chemical Abundance ?

Chemical Abundance ?

Chemical Abundance?

Chemical Abundance?

Fe-core Collapse SNe Nordhaus+ 2010 Using CASTRO

Chemical Abundance ?

Wednesday, October 10, 12

Approaches

Gadget-2 (Springel 2005)

Star formation Radiative transfer Diffusion mixing Chemical cooling Bromm+ 2002,2003 Greif+ 2009, 2010

Johnson+ 2007 Jeon+ 2012

Supercomputers

Itasca

Franklin

Hopper

Jaguar

Approaches

Gadget-2 (Springel 2005)

Star formation Radiative transfer Diffusion mixing Chemical cooling Bromm+ 2002,2003 Greif+ 2009, 2010

Johnson+ 2007 Jeon+ 2012

Supercomputers

Itasca

Franklin

Hopper

Jaguar

z ~ 28

Wednesday, October 10, 12

Wednesday, October 10, 12

Pop III 60 Msun SN

 $t_sn~=~0.1673~Myr$

The First Binaries

Length: 5000 AU (physical)

x-y plane

Turk+ (2009)

Stacy+ (2011)

					10 ⁴⁸ 10 ⁴⁸			
					10 ⁴⁰	1		Hel
					(s) apple 1047	/		4
					10 ⁴⁸ 10 ⁴⁸ 10 ⁴⁴	1	M15	Hell
Name	$^{\rm H~II}_{[10^{63}]}$	${\rm He~II} \\ [10^{63}]$	$\begin{array}{c} {\rm He~III} \\ [10^{61}] \end{array}$	t_* [Myr]	10 ⁴⁰ 10 ⁴⁰ 10 ³⁸	/	M45 M60 M15+M45	
M15 M45 The first binary (M15+M45)	0.64 2.98 3.62	0.16 1.45 1.61	0.10 4.34 4.43	10.51 4.39 10.51	10 ³⁶	104	10 ⁵ 10 ⁹ Time [yr]	107
M60	4.18	2.21	8.31	3.77				

Chen+ in prep

Physical Properties of IGM

Physical Properties of IGM

Wednesday, October 10, 12

The First X-Ray Binary

The First X-Ray Binary

The 45 Msun BH with dM/dt = 10⁻⁶ Msun/yr t = 0.0098 Myr

Conclusions

All possible radiative feedbacks

Ionizing photons
SN shock reheating
X-Ray Binaries

Chemical enrichment

SN feedback
Pop III to Pop II transition (Talk: Klessen, Schneider)

Mass of the first stars does matter !!!

Future Work

Future Work

The First Galaxies

Many thanks for your attention

This work has been strongly supported by:

The Kavli Institute for Theoretical Physics University of California, Santa Barbara

National Energy Research Scientific Computing Center

Scientific Discovery through Advanced Computing

