The stellar IMF at very low metallicities

Gustavo Dopcke, Paul Clark, Simon Glover, and Ralf Klessen

- Physical mechanisms that shape the IMF
- Low metallicity coolants
- Simulations that address the problem
- Building up the IMF

• Mechanical: Turbulence and Rotation

- Mechanical: Turbulence and Rotation
- Thermal: dependent on the chemical composition and mechanic history

- Mechanical: Turbulence and Rotation
- Thermal: dependent on the chemical composition and mechanic history
- B-Field: Equipartition can be reached quickly even in the metal-free case (see talk by J. Schober)

- Mechanical: Turbulence and Rotation
- Thermal: dependent on the chemical composition and mechanic history
- B-Field: Equipartition can be reached quickly even in the metal-free case (see talk by J. Schober)
- Feedback: jets, accretion luminosity, young stars radiation

- Mechanical: Turbulence and Rotation
- Thermal: dependent on the chemical composition and mechanic history

The stellar IMF

- for Z=0, M >> M_{\odot}
- otherwise, IMF = Chabrier & Kroupa

Pop III

 Pop III IMF is top heavy (Abel, Bromm, Clark, Greif, O'Shea, Norman, Yoshida, etc.)

Present day IMF

 Present day IMF favours masses < 1M₀ (Kroupa, Chabrier, etc.)

 What is the driving mechanism responsible for the change in the IMF shape?

- 1000 M_o, 0.35 pc, 300K, 3M_{Jeans}
- $E_{tub}/E_{grav} = 10\%$ and $E_{rot}/E_{grav} = 2\%$

- 1000 M_o, 0.35 pc, 300K, 3M_{Jeans}
- $E_{tub}/E_{grav} = 10\%$ and $E_{rot}/E_{grav} = 2\%$
- 40 million SPH particles

- 1000 M_o, 0.35 pc, 300K, 3M_{Jeans}
- $E_{tub}/E_{grav} = 10\%$ and $E_{rot}/E_{grav} = 2\%$
- 40 million SPH particles
- Primordial chemical network

- 1000 M_o, 0.35 pc, 300K, 3M_{Jeans}
- $E_{tub}/E_{grav} = 10\%$ and $E_{rot}/E_{grav} = 2\%$
- 40 million SPH particles
- Primordial chemical network
- Dust cooling

- 1000 M_o, 0.35 pc, 300K, 3M_{Jeans}
- $E_{tub}/E_{grav} = 10\%$ and $E_{rot}/E_{grav} = 2\%$
- 40 million SPH particles
- Primordial chemical network
- Dust cooling
- Modified Gadget2 (Springel 2005)

- 1000 M_o, 0.35 pc, 300K, 3M_{Jeans}
- $E_{tub}/E_{grav} = 10\%$ and $E_{rot}/E_{grav} = 2\%$
- 40 million SPH particles
- Primordial chemical network
- Dust cooling
- Modified Gadget2 (Springel 2005)

•
$$Z/Z_{\odot} = 0, 10^{-6}, 10^{-5}, 10^{-4}$$

- 1000 M_o, 0.35 pc, 300K, 3M_{Jeans}
- $E_{tub}/E_{grav} = 10\%$ and $E_{rot}/E_{grav} = 2\%$
- 40 million SPH particles
- Primordial chemical network H₂ is the main gas Dust cooling phase
- Modified Gadget2 (Springel 2005) coolant
- $Z/Z_{\odot} = 0, 10^{-6}, 10^{-5}, 10^{-4}$

Density and Temperature Maps

Density and Temperature Maps

11[°]

10 '

Tuesday, October 9, 2012

- Mode of star formation changes
- Favors lower mass objects

Conclusions

- Dust is an efficient coolant
- At Z ~ 10⁻⁴ Z_{solar}, dust plays an important role in causing fragmentation
- And on the evolution of the stellar IMF

11 • Sink particle

10

9

8

12 m

6 Density

13

12

11 Z

10 0

15

14

13

12

- continue beyond the formation of the first very high density, protostellar core
 - Replace high density region by a non-gaseous, simple particle
 - Contains all the mass in the region and accretes any infalling mass (Bate 1995)
 - Formed once the SPH particles are bound, collapsing, and within an accretion radius, $h_{acc} = 1.0 \text{ AU}$
- The threshold number density for creation is **5.0** x **10**¹³ cm⁻³

Accretion Rates

Encounters

Level of Instability

3D Simulation

Difference due to PdV heating

Sink Mass Function

Sink Mass Function

Sink Mass Function

Future work

- Change dust properties
- Add accretion luminosity feedback

Clark et al. 2008

- Used a tabulated EOS
- P(n) and u(n)
- Avoid solving the full thermal energy
 equation
- 500 M_{sol} and 0.17 pc
- 25 million SPH particles
- Rotation and turbulence

Clark et al. 2008

Different Dust Opacity Models

Different Dust Opacity Models

