Reduction methods for astrochemical networks

T. Grassi

"La Sapienza" University of Rome - Group of Theoretical Chemistry

October 2012

(The Low-Z ISM - Göttingen)

Reduction methods for astrochemistry

October 2012 1 / 2

Image: A matrix

Outline

- Introduction
- Computational problem
- Methods overview
- Flux-based method
- Large network example
- Conclusions

ISM chemistry

Why chemistry is important (in ISM numerical simulations)

- Needed to compute metal/molecular cooling \rightarrow SF
- Opacity
- Comparison with observations
- . . .

Why chemistry is troublesome (in ISM numerical simulations)

- very CPU demanding
- has a non-linear behavior
- chemical networks are complex
- needs accurate rates

4 D b 4 B b 4

Dealing with complexity - Numerical framework

Typical framework:

e.g. Hydrodynamical simulations (1D, 3D, shock, PDR, ...)

particle \equiv unit of gas ($\approx 10^4 M_{\odot}$)

Each gas particle computes:

- hydrodynamics (e.g. SPH)
- gravity (e.g. tree)

Each gas particle updates:

- chemistry (H, H_2 , e^- , ...)
- gas temperature (Λ, Γ)
- dust (ρ, Τ, dn/da, ...)

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Merlin, Grassi, et al. 2009 A&A

How to update a gas particle at a given time-step ($\gtrsim 10^6$ particles (gas units) > 10^4 time-steps)

- e.g. 1D-hydro: chemistry (large network)
- \gtrsim 90% of the CPU time

Dealing with complexity - The chemical network

Chemical network = Cauchy's problem:

$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = \underbrace{\sum_{lm} k_{lm}(T)n_l(t)n_m(t)}_{lm} - \underbrace{\sum_{j} k_{ij}n_i(t)n_j(t)}_{j}$$

•
$$n_i(t=0)=\hat{n}_i$$

•
$$\sum_i n_i(t) \mu_i = \text{const}$$

e.g. $A+B \rightleftharpoons C+D$

 $\dot{n}_{\rm A} = -k_{\rm AB} n_{\rm A} n_{\rm B} + k_{\rm CD} n_{\rm C} n_{\rm D}$ $\dot{n}_{\rm C} = +k_{\rm AB} n_{\rm A} n_{\rm B} - k_{\rm CD} n_{\rm C} n_{\rm D}$

Problem:

Solve an Ordinary Differential Equations System (ODE)

(The Low-Z ISM - Göttingen)

Reduction methods for astrochemistry

"Pure" computational strategies

- Efficient solver: DVODE/DLSODES (up to ×100)
- Interpolate rate tables (up to ×5)
- Particle Buffering (up to ×10)
- Custom compiler optimization
- Know your code: profiling
- Good programming practices (save divisions, avoid casting, ...)

Dealing with complexity - Methods/2

Buffering method or "The solver always* rings twice"

- · calls to the solver are cpu demanding
- same initial particle conditions lead to same particle evolution
- store already computed chemical evolutions in a buffer
- criterion of similarity: $s_j = \sqrt{\sum_i (B_{ij} x_i)^2 / N} < \xi_b$
- $x \leftarrow$ initial conditions for j = particle in buffer B do if $(s_j < \xi_b)$ then $\hat{x} = (\hat{x}_j - x_j) dt/dt_j + x$ endfor

if (not found) then

```
\hat{x} \leftarrow solver(x)
add \{x, \hat{x}\} to buffer B
```

endif

*often

Dealing with complexity - Methods/3

Problem: too many reactants (>400) and too many reactions (>4000)! Methods to solve ODE System:

Dealing with complexity - Flux-based reduction /1

Flux-based reduction

- Flux: $F_i = k_i n_q n_p$
- RHS term: $\dot{n}_i = \sum_{j=1}^N s_j F_j$
- Determining less "active" reactions @ given sub-steps
- i.e. neglect $F_i | F_i < \zeta F_{\max}$
- reduced RHS term: $\dot{n}_i = \sum_{j=1}^M s_j F_j$ where M < N

Two-reactions example

- A+B \rightarrow C $F_1 = k_1 n_A n_B$
- D+E \rightarrow C $F_2 = k_2 n_D n_E$

•
$$\dot{n}_{\rm C} = F_1 + F_2$$
 $N = 2$
• $\dot{n}_{\rm C} = F_2$ $M = 1$ ($n_{\rm A} = 0$)

Dealing with complexity - Flux-based reduction /2

Large model example

- ≈Wakelam&Herbst 2008
- species: 451
- reactions: 4399
- one-zone
- no cooling
- *T* = 10 K
- $\zeta_{\rm CR} = 1.3 \times 10^{-17} \ {\rm s}^{-1}$
- $A_v = 10$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dealing with complexity - Flux-based reduction /3

Results $x_{\rm C}(t)$:

(details in Grassi, Bovino et al. 2012 MNRAS)

イロト イポト イヨト イヨト

Dealing with complexity

- · Computational astrochemistry needs reduction methods
- "Pure" computational methods are required
- Other strategies allow large simulations
- Flux-based method is the best choice*

Next talk by Stefano Bovino: a priori methods!

*for the moment

500

A 3 > 4

Thank you for your attention!

Also thanks to: F.A.Gianturco, D. Schleicher, S. Bovino