Magnetic fields and radio halos: as seen in edge-on spiral galaxies

Marita Krause

Max-Planck-Institut für Radioastronomie, Bonn

- Magnetic field structure
- Vertical scale heights ↔ galactic wind, SFR and dynamo action

Magnetic field strength

Equipartition model

Total magnetic field strength B_t ~ SFR ≈0.34 (Niklas & Beck 1997)

B_{reg} is locally uncorrelated with SFR (Chyzy 2008)
 B_{reg}/B_t decreases with increasing SFR (Stil, Krause et al. 2009)

Magnetic field configuration in edge-on galaxies

i = 88° SFR = 3.3

• **parallel** to the disk along the midplane

 → projected ASS field as seen in face-on galaxies
 • vertical components at larger radii away from the plane

→ X-shaped magnetic field

Edge-on galaxies with high SFR

NGC5775 i = 86° SFR = 7.3

Scetch of toroidal disk field and halo field

& vertical field below the central disk

Soida, Krause, Dettmar, Urbanik 2011

Edge-on galaxies with moderate/high SFR

NGC4666 i = 80° SFR=1.6

NGC253 i =78° SFR=6.3

Soida 2005

Heesen, Krause, Beck, Dettmar 2009

NGC253 Sc (starburst) i=78° SFR = 6.3

6cm Eff&VLA TP + Bfield

ASS-field (i=78°) PI + B

6cm Eff&VLA PI + Bfield

Bfield – ASSfield = vertical field

After subtraction of the ASS field: purly X-shaped field is visible.

Heesen, Krause, Beck, Dettmar 2009

Edge-on galaxy with low SFR

NGC4565 VLA & Eff 6cm

SFR: 1.3 SFE: 3.2 i = 86°

Dumke PhD 1997

11 edge-on galaxies with

high SFR or starburst

low SFR

S [!	. <mark>FR(IR)</mark> M _☆ /yr] [SFE L _o / M _o	i {]	type		SFR(IR) [M _č /yr] [SFE L _ʊ / M _ʊ]	i	type
M82	1.8	22	79°	(Irr) SBc	M104	1.2	4.2	84°	Sa
N253	6.3	14	78°	Sc	N3628	1.1	4.9	89°	Sb pec
N891	3.3	5.0	88°	Sb	N4217	1.4		86°	Sb
N4631	2.1	9.9	86°	SBcd	N4565	1.3	3.2	86°	Sb
N4666	1.9	2.1	80°	Sc	N5907	1.3	4.0	87°	Sc
N5775	7.3	6.1	86°	Sbc					

A dynamo generated large-scale magnetic field in the disk

→ASS disk-field

Large-scale RM-pattern indicates an ASS disk-field. Its poloidal component alone cannot explain the observed halo fields.

 \rightarrow dynamo action in the halo

or

galactic wind needed

Dynamo theory

• Self-consistent local box simulations of a SN-driven turbulent dynamo (Gressel, Elstner et al. 2008)

•Global galactic-scale MHD simulations of the CR-driven dynamo (Hanasz et al. 2009):

 \rightarrow horizontal spiral field &

large lobes of field in vertical direction

→ X-shaped field structure and vertical fields importance of galactic wind: vertical transport of magnetic flux and helicity

NGC253 Sc (starburst) i=78°

6cm Eff&VLA TP + Bfield

20cm VLA A-array

30" HPBW (600pc)

1.3" x 2.2" HPBW (25 x 42pc)

Heesen, Beck, Krause, Dettmar 2011

Central region of NGC253: Magnetic Filaments

20cm: 1.3" x 2.2" HPBW (25 x 42pc)

3cm (7.5" HPBW) on H α

Red: Hα Blue: Chandra soft X-ray Green: 20cm

Helical magnetic fields may collimate nuclear outflow

Heesen, Beck, Krause, Dettmar 2011

Vertical scale heights in edge-on galaxies

NGC253 VLA & Eff 6cm

Heesen, Beck, Krause, Dettmar 2009

NGC4565 VLA & Eff 6cm

Dumke PhD 1997

But:

- dumbbell shape
- some disks look thicker, others thinner

global vertical scale heights are very similar

	Vertical scale he	SFR(IR) SFE		Bt	i	type	
	thin disk	thick disk/halo	M _☆ /yr]	[L _☆ / M _☆]	[µG]	[°]	
NGC253	380 ± 60 pc	1.7 ± 0.1 kpc	6.3	14	12	78	Sc
NGC891	270	1.8	3.3	5.0	6	88	Sb
NGC362	<mark>8</mark> 300	1.8	1.1	4.9	6	89	Sb pec
NGC456	<mark>5</mark> 280	1.7	1.3	3.2	7	86	Sb
NGC577	5 240 ± 30 pc	2.0 ± 0.2 kpc	7.3	6.1	8	86	Sbc
Mean	300 ± 50 pc	1.8 ± 0.2 kpc					

Vertical scale heights and CR-driven galactic wind

Radial dependence of scaleheight (B) for NGC253: Vertical scale height (halo) is mainly determined by synchrotron losses of CRE:

Synchrotron lifetime

at a single frequency is $t_{syn} \sim B_t^{-1.5}$

CR bulk-speed $v_{cr} = h_{CR} / t_{syn} = 2 h_z / t_{syn}$

v_{cr} = 300 ± 30km/s in north-eastern halo (Heesen, Beck, Krause, Dettmar 2009)
 → existence of a galactic wind in NGC253

Similar scale heights $h_{\tau} \rightarrow$ velocity of galactic wind ~ $B_{t}^{1.5}$ ~ SFR ≈ 0.5

V	Vertical scale heights at 6.2cm			SFR(IR) SFE		i	type
	thin disk	thick disk/halo	M _☆ /yr]	$[L_{c}/M_{c}]$	[µG]	[°]	
NGC253	380 ± 60 pc	1.7 ± 0.1 kpc	6.3	14	12	78	Sc
NGC891	270	1.8	3.3	5.0	6	88	Sb
NGC3628	300	1.8	1.1	4.9	6	89	Sb pec
NGC4565	280	1.7	1.3	3.2	7	86	Sb
NGC5775	240 ± 30 pc	2.0 ± 0.2 kpc	7.3	6.1	8	86	Sbc
Mean	300 ± 50 pc	1.8 ± 0.2 kpc					
NGC4631	390 ± 200 pc	2.7 ± 1.5 kpc	2.1	9.9	6	86	SBd
NGC5907			1.3	4.0	5	87	Sc
M82	small and north-	south asymmetry	1.8	22	24/98	79	Irr/SBc
M104	one-comp. gaus	1.2	4.2	4	84	Sa	

Summary

- Magnetic field structures in edge-on galaxies are very similar, independent of SFR: parallel in the midplane and X-shaped away from the plane, sometimes vertical fields above or below the central region.
- NGC4631 also shows a plane-parallel magnetic field along the disk.
- Observations in NGC253 indicate that helical magnetic filaments are able to collimate the nuclear outflow as seen in Hα and X-rays.
- Similar vertical scale heights in galaxies with different SFR imply a **relation** between CR bulk speed (**galactic wind**), total field strength **B**, and **SFR**.
- A galactic wind seems to be essential for an effective dynamo action, the observed similar vertical scale heights and X-shaped magnetic field structure in edge-on galaxies.
- Strong tital interaction may be the reason for deviating and locally different scale heights in M82 and NGC4631.

→ future progress with EVLA, LOFAR, SKA
CHANG-ES

Thank you