The Impact of Thermodynamics on Gravitational Collapse

Thomas Peters

Institut für Theoretische Physik Universität Zürich

Dominik Schleicher, Ralf Klessen, Robi Banerjee, Christoph Federrath, Rowan Smith, Sharanya Sur

Star formation occurs under a large variety of conditions:

- Milky Way-type molecular clouds
- starburst galaxies
- environments of supermassive black holes
- primordial minihalos

Star formation occurs under a large variety of conditions:

- Milky Way-type molecular clouds
- starburst galaxies
- environments of supermassive black holes
- primordial minihalos

Thermodynamic response of gas to compression determined by:

- ambient radiation field
- cosmic ray flux
- overall metallicity

Primordial Thermodynamics

Polytropic Collapse Calculations

- simplified collapse calculations: assume $\Gamma = 1.1$
- take Bonnor-Ebert sphere as model for primordial minihalo
- impose turbulent velocity fluctuations
- study magnetic field amplification by small-scale dynamo
- high Jeans resolution necessary

Sur et al. 2010

How does polytropic exponent Γ influence collapse behavior?

Collapse Simulations with FLASH

- collapse simulations for $\Gamma=0.7, 0.9, 1.1, 1.2$
- resolution of 64 cells per Jeans length
- positive-definite MHD Riemann solver (Waagan et al. 2011)
- halo from Greif et al. 2011 as initial condition $(M \approx 100 M_{\odot}, \lambda_{\rm J} = 8000 \, {\rm AU}, T_{\rm mean} = 710 \, {\rm K})$
- set up magnetic field with Kazantsev spectrum and $B_0 = 1 \, \mathrm{nG}$
- follow collapse for up to 16 refinement levels

Density and Magnetic Field Structure

Density and Magnetic Field Structure

Significant differences between super-isothermal ($\Gamma>1)$ and sub-isothermal ($\Gamma<1)$ case!

Super-isothermal collapse

- strong turbulence
- magnetic field highly tangled
- magnetic field efficiently amplified

Sub-isothermal collapse

- collapse proceeds much more rapidly
- strong shocks and filaments form
- magnetic field lines are coherent on Jeans scale and beyond

Velocity Structure

Velocity Structure

Differences also show up in velocity field:

- more small-scale structure in super-isothermal case
- even in the sub-isothermal case vortices near shocks form

Small-scale dynamo action possible!

Magnetic Field Amplification

- growth of turbulent velocity dispersion much weaker for sub-isothermal collapse
- \bullet all simulations show increasing $B/\rho^{2/3}$
- interpretation difficult for sub-isothermal runs

- Thermodynamics has significant influence on gravitational collapse.
- Super-isothermal collapse leads to strong turbulence and tangled magnetic field lines.
- Sub-isothermal collapse leads to pronounced shocks and filaments, magnetic field is coherent across Jeans volume and beyond.
- Magnetic field gets amplified beyond pure compression in all cases.